本文中有大数据具如何应用于品牌研究、NPS研究、市场细分、产品测试、商圈研究这5中研究方向的介绍,对于传统市场研究是一种补充和启发,但是我们的实践经历表明,针对不同的行业,大数据的应用适用性并不相同。比如,针对电子产品使用大数据研究品牌就很好,但研究饮品品牌的话,你会发现在网络上抓不到个“卵”,也无法进行所谓的“产品灰度测试”;而商圈研究,使用移动公司的数据就非常好了,但前提是企业可以获得这些数据。在看的过程中,你会有一种感觉,这样的数据要到哪里去搞嘛??!! 总之,大数据依然在发展中,未来的使用空间会越来越大,数据的开放性是需要解决的问题,而调查手段也将一直是一个低成本、快速、有效的方式。不管大数据还是小数据,解决问题就是好数据!
正文
传统的用户研究包括品牌研究、客户满意度研究、商圈研究、市场细分、渠道研究、产品定价研究以及产品测试,这些研究大多数用市场调研的方法来实现。市场调研由于调研方法带来的诸多问题,导致结果的代表性、准确性以及研究的效率都存在不同程度的挑战。我们相信,随着大数据的发展,大数据将对市场与用户研究方法将带来革命性的变化。本文将介绍大数据目前在市场与用户研究方面的应用与探索。
一、大数据用于品牌研究
品牌认知度、品牌形象和品牌满意度研究是品牌研究的三大重要部分。
1)品牌认知度是品牌资产的重要组成部分,品牌认知度是衡量消费者对品牌内涵及价值的认识和理解度的标准,同时也是公司竞争力的一种体现。
2)而品牌形象是品牌在公众心中所表现出的个性特征,它体现公众特别是消费者对品牌的评价与认知,以及对品牌所具有的一切联想。品牌形象分为三个层级的形象:产品或服务本身的形象、使用者的形象、产品或提供者的形象。
3)品牌满意度是消费者通过对一个品牌产品或服务的可感知效果与对比预期相比较后,所形成的愉悦或失望的状态,可以不满意、满意、满足、愉悦等四种情绪,一个拥有高满意度的品牌,其顾客的购买率及重复购买率也在相应提升,因此品牌满意度的研究也非常重要。
在传统的市场研究中,品牌认知、品牌形象和品牌满意度研究是通过市场调查的手段来实现。在大数据时代,我们可以利用互联网大数据辅助品牌认知度、品牌形象和品牌满意度研究。我们可以通过网络爬虫技术,对新闻媒体、社会化媒体等网站实时全网监测,实时掌握网民对品牌和竞品的品牌提及量、产品提及量以及提及量的趋势,掌握自己品牌和竞争的品牌形象评价;通过品牌和产品的正负面评论的监测,及时了解对品牌消费者对品牌的满意度情况,及时发现问题。过去,进行品牌认知度、品牌形象以及品牌满意度的市场调研,从调查开始到报告产生,至少需要半个月到一个月,而且由于成本和操作性的限制,只能选取一些代表性的人群和地点做代表性的抽样不够全面。利用大数据手段,我们可以实现更快更全面以及更真实的统计,这对我们及时的了解品牌认知度、品牌形象以及品牌满意度的现状和趋势非常有帮助。
二、大数据用于忠诚度研究
净推荐值研究方法是客户忠诚度研究中的重要方法。净推荐值(NPS)研究方法由国际知名咨询公司贝恩咨询客户忠诚度业务的创始人佛瑞德·赖克霍徳(Fred Reichheld)在2003《哈佛大学商业评论》文章“你需要致力于增长的一个数字”的文章中首次提到。该方法通过调查客户问题“您有多大可能向您的朋友或同事推荐我们公司的产品或服务?(0-10分)” 来获得,根据客户的回答分数分成三组:
第一组给公司9分或10分,称之为“推荐者”(promoters);他们是对公司产品或服务满意度和忠诚度非常高的客户,在当今社会化媒体营销时代,他们是公司产品或服务免费营销人员,他们会推荐朋友和亲人来购买。
第二组给公司7分或8分,为“被动满意者”(passively satisfied);他们对公司产品或服务既无不满意,也无满意的客户,较易被其他竞争者吸引。
第三组给0至6分,是“贬损者”(detractors)。他们对公司的产品或服务非常不满意,不仅仅停止购买公司的产品或服务,他们会尽一切可能劝周围的人不要买,同时会转向其他竞争者。
NPS值即为推荐者所占百分比与贬低者所占百分比的差值(如下图)。NPS的业务逻辑是:推荐者会继续购买并且推荐给其他人来加速你的成长,而贬损者则能破坏你的名声,不仅仅停止购买,而且劝说周围朋友购买,让你在负面的口碑中阻止成长,NPS则是反映了这两股力量较量的结果。Fred Reichheld实证研究证明NPS和长期利润成长有正相关性,NPS表现越好,未来企业利润的成长就会越好。
大家可能会问,NPS分数在多少为比较理想的状态。实证研究表明,NPS分数在NPS的得分值在50%以上被认为是表现不错,得分值在70-80%之间则证明公司拥有一批高忠诚度的好客户(如苹果、Google等互联网公司的NPS超过70%),大部分公司的NPS值在5-10%之间,更差的公司NPS还可能是负值。当然,我们仅了解NPS是不够的,NPS本身不能提供具体的改进意见,我们还需要结合影响满意度的原因深入研究,尤其是对贬损者指标进行深入的满意度研究,挖掘“贬损”背后的原因。
大数据技术革新传统NPS研究方式。大部分NPS的研究其数据获取方式都采用调查问卷的方式,这种方式很容易受到抽样方式、客户心态甚至活动礼品等多方面的影响,导致数据失真。在大数据时代,NPS的数据可以来源于客服系统的语音数据和评价文本数据、电商平台购物用户的打分及用户评论文本数据以及社会化媒体如微博、论坛等的评论文本数据,这些数据我们都称之为“用户反馈数据”。我们可以利用语音分析技术、文本分析技术将这些非结构化的“用户反馈数据”结构化,从而更好的进行数据挖掘,识别“贬损者”和“推荐者”,全面和快速的计算NPS,并可以利用这些大数据,了解“贬损者”的“贬损”的原因。如果还能够把业务系统和运营系统的“用户行为数据”关联整合进来,我们不仅仅通过“用户反馈数据”了解用户“贬损”原因,还可以了解“贬损者”的历史“用户行为数据,将更有利于我们更好的洞察用户,更全面、更及时优化“贬损者”的用户体验和改进方向;同时可以定向为“推荐者”展开更多的优惠促销或者附加增值服务。通过大数据手段可以更好的实时掌握NPS,还可以洞察NPS“推荐”或“贬损”的原因,为市场推广、客户服务、业务运营等部门的关键应用场景提供决策支撑,有利于进一步提升用户亲密度和忠诚度。
三、大数据用于市场细分
市场细分是按照消费者在市场需求、购买动机、购买行为和购买能力方面的差异,运用系统方法将整体市场即全部顾客和潜在顾客划分为数个不同的消费者群(子市场),以便选择确定自己的目标市场。市场细分的基础是购买者对产品需求的差异性。但是,这种差异性一般很难直接度量,故常用其它比较容易度量以及和需求密切相关的变量来对市场进行细分。这些变量包括地理、人口统计学属性、行为以及消费心态等变量:地理细分是将市场划分为不同的区域市场,例如可按下列地理特征将市场细分:行政区划、城市规模、资源状况和气候;人口统计学细分人口统计变量来细分市场,常用来细分市场的人口学变量有年龄、性别、民族、居住地、家庭规模与生命周期等;行为和态度细分是根据消费者对产品的购买动机、购买行为和使用情况来细分;心理细分是按消费者的社会阶层、生活方式、人格特征划分为不同的群体。市场细分既可以按照以上单维度细分,也可以组合以上维度进行多重标准细分,同时按照多重标准可以将消费者分为比较小的、同质性更高的群体。
区别于传统的市场细分,大数据应用于市场细分在以下方面起到更为重要的作用:
1)数据采集的维度更为全面,数据采集更为实时,尤其是在行为数据的采集更为及时、细腻和全方位;
2)用大数据算法进行细分模型建模,可以吸纳更多的细分维度,从而可以细分出更小、同质性更高的细分群体;
3)数据更新更快,计算速度更快,市场细分模型更新速度更快,更能及时反映用户需求的变化,从而可以做出更准确、及时细分;
4)市场细分可以和营销渠道、营销活动进行实时关联和调优,通过大数据算法判定的细分群体可以实时的进行最有效营销活动推荐,并可以用大数据计算最为有效推广渠道触达这些细分群体。
四、大数据用于产品测试
产品测试指的是企业运用专业的技术手段和研究方法进行以获得目标消费者(或用户)对相关产品的认知或评价,以测试新产品的接受度或改进现有产品。产品测试在产品的各生命周期均有应用:
在产品的开发期,产品处于研发和概念阶段,此时可以对已有产品进行测试,以了解消费者认为需要改进的方面;或者对尚未成型的产品进行概念性的测试,指导产品经理对正在开放的产品做调整和改进;
在产品介绍期,产品准备投放市场以及刚刚投放市场不久,企业可以通过产品测试以了解最有效的销售渠道和促销方式,以及对产品的包装、价格进行测试;
在产品的成长期和成熟期,企业可以通过自身产品和竞争产品进行对比测试,及时掌握消费者(或用户)对产品的评价和态度;
在产品的衰退期,为了延长产品生命周期,企业会进行产品的改进或者产品新方向的测试。
以上不同阶段的产品测试,传统的实施方法一般是通过市场调查方式来实现,通常是对消费者(或用户)进行调查或者访问,利用多种访问或调查工具来实现。
在大数据和互联网时代,我们可以用更快和更为准确的方式来进行产品测试:
在产品的开发期,我们可以通过电商平台或者微博、论坛等社会化媒体对现有产品的网上评论进行收集,通过自然语言处理和数据挖掘手段,以了解消费者的不满和产品改进方向;或者灰度测试来了解新版本的效果,即让一部分用户继续用老版本,一部分用户开始用新版本,如果用户对新版本没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到新版本上面来。灰度测试和发布可以保证整体产品系统的稳定,在初始灰度的时候就可以发现、调整问题。
在产品的介绍期,产品的包装、外观设计和价格等也可以通过灰度测试和发布的方式来掌握消费者的反馈以进行相关的调优。
在产品的成长期和成熟期,我们同样可以通过大数据手段对电商平台和社会化媒体收集消费者对自身产品和竞争产品的评论,通过自然语言处理和数据挖掘掌握消费者对产品的不满,以改进我们自己的产品。像宝洁这种对传统市场调查非常重视的企业,目前已经逐渐开始利用大数据方式进行产品测试,尤其是通过电商平台对每一个产品都能收集评价和反馈,帮助产品的改进和创新。
五、大数据与商圈研究以及空间商业智能
商圈是指商店以其所在地点为中心沿着一定的方向和距离扩展所能吸引顾客的范围。按照离商店的距离,商圈分为三层,包括核心商圈,次级商圈和边缘商圈。核心商圈是离商店最近,顾客密度最高,约占商店顾客的55%-70%;次级商圈是指位于核心商圈外围的商圈,顾客分布较为分散,约占商店顾客的15-20%;边缘商圈是于商圈的最外缘,包含商圈剩下的客户,此商圈顾客最为分散,数量最少。
影响商圈的因素可以分为内部因素和外部因素。内部因素包括:
店铺经营商品的种类。经营传统商品、日常用品的店铺吸引顾客的区域范围较小,商圈范围小;经营非常用品,吸引顾客的能力强,商圈范围广。
店铺的经营规模。随着店铺经营规模的扩大,其商圈也在随之扩大,但增大到一定规模时,商圈范围也不会扩大;
店铺的经营特征。经营同类商品的两个店铺即便同处一地的同一条街道,其对顾客的吸引力也会有所不同,相应的商圈规模也不一样。经营灵活、商品齐全、服务周到,在顾客中留有良好形象的店铺,顾客竞争力强,自然商圈规模相对也会较其他同行业店铺大;
店铺的主体设计,包括店铺所在楼层构成及配置,吸引顾客的设施状况,如停车场停车位的多少以及其所处位置等。
影响商圈的外部因素包括:
店铺的促销手段。利用人员推销与营业推广活动等可以吸引更多的次级以及边缘商圈的顾客,可以更好扩张商圈范围;
竞争店铺的位置。相互竞争的两店之间距离越大,它们各自的商圈也越大。如潜在顾客居于两家同行业店铺之间,各自店铺分别会吸引一部分潜在顾客,造成客流分散,商圈都会因此而缩小。但有些相互竞争的店铺毗邻而设,顾客因有较多的比较、选择机会而被吸引过来,则商圈反而会因竞争而扩大;
人口流动性。人口流动是指在交通要道、繁华商业区、公共场所过往的人口。一个地区的流动人口越多,在这一地区经营的店铺的潜在顾客就越多。
交通地理状况。交通地理条件与商圈规模密切相关。在商业繁华地带,交通条件发达,人口流动性强,有大量的潜在顾客,因而商圈范围也就越大;反之,店铺设在交通偏僻地区,顾客主要是分布在店铺附近的居住人口,其商圈范围一般较小。
人口统计学特征和消费特征。包括商圈的客户性别、年龄、收入、家庭规模、消费支出能力等。
基于商圈的地理信息和数据挖掘可以应用于商铺选址、销售区域分配、物流配送路径优化、潜在消费者空间分布、线下广告投放优化、城市规划等数据可以通过大数据的手段进行获取。在这些应用中,商铺选址应用最多,尤其是应用于银行、快消、电信、医药、家具等行业。
传统的商圈相关信息获取是通过市场调查的手段获得。在大数据时代,商圈相关的位置、客流和消费者信息是可以通过大数据获取的,尤其是通过电信运营商或具有地图服务能力的互联网企业。如中国联通推出的商铺选址大数据应用服务,中国联通可以把城市区域进行栅格化处理,分析每个栅格(不同位置)的用户群信息、客流信息等,为零售商进行店铺选址的决策依据,并且已经成功的应用到烟草直营零售终端的分析和选址优化中。而国内的一些城市的相关企业也在启动智慧商圈的基础服务。他们借助为公众提供免费WiFi服务的同时,把商圈人流数据收集成为城市大数据,建立智慧商圈大数据分析平台和应用服务,通过智慧商圈服务数据分析平台的应用服务于城市管理,比如了解商圈人流、客流,为城市规划和交通线路设计提供依据和参考,也可以为商家选址和广告促销提供依据。在国外,一家名为PiinPoint的企业,他们提供基于网络的分析工具,可以帮助企业和商铺选址进行优化,它能够收集各种数据,包括人口、税率、交通信息和房产信息等,对不同的待选地址进行深度分析,并吸引了许多有扩张计划的美国零售商。
对于大数据与商圈信息的结合研究,无论是工业界还是学术界都在积极探索,甚至这些研究发展已经逐步发展为空间商业智能的探索。美国密西根大学中国信息研究中心主任鲍曙明是这样界定的空间商业智能:空间商业智能是商业智能服务的一种扩展,涉及到空间和网点的分布,周边的人口、环境、地理等等之间的关系。大数据、移动技术以及云计算是未来发展趋势,如何将这些新技术和空间商业智能有机整合,提升应用的能力,并将地理智慧普及到更广泛的商业领域,目前还处于探索阶段,还需要业界同仁共同努力。
近两年兴起的室内定位技术ibeacon将会对空间商业智能的发展有着更为积极的促进作用。iBeacon是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能,通过软件和硬件的结合,从而大大提高室内精度,从原来的几百米或者几十米的定位精度提高到一米以内的定位精度。这种能力将极大的强化购物体验,如当客户走到某个商品前,手机应用自动跳出商品的介绍和促销信息。对于商家,也可以更加精准的判别潜在消费者,及时的向消费者进行精准营销。随着iBeacon的发展,商家位置信息将更为精准,线下商品信息更为丰富,尤其是极大弥补室内定位的数据源,这对空间商业智能的发展是极大的利好。
总之,大数据应用于市场和用户研究仍仍处于探索阶段,依然面临着诸多的挑战,尤其是数据采集的不全面的问题、数据质量的问题以及数据处理和分析技术有待加强尤其是非结构化数据的处理和分析技术。但我们不可否认的是,大数据应用与市场和用户研究将带来研究速度和效率的极大提升。随着大数据相关技术的发展和成熟,我们有理由相信,利用大数据进行更好的市场洞察和用户洞察洞察。市场与用户研究的同仁,我们一起拥抱大数据吧。